Friday, October 31, 2025

Top 5 This Week

Related Posts

High-plex spatial RNA imaging in one round with conventional microscopes using color-intensity barcodes

- Advertisement -

0:00

- Advertisement -

Data availability

Single-cell RNA-sequencing data were obtained from http://mousebrain.org/, from the Gene Expression Omnibus under accession numbers GSE151530 and GSE140228) and from the Chinese National Gene Bank (CNP0000650). Raw data of this study were deposited to Zenodo, including raw images (HCC, https://doi.org/10.5281/zenodo.12750711; mouse embryo, https://doi.org/10.5281/zenodo.12750725; mouse brain: https://doi.org/10.5281/zenodo.12673246) and analysis-related data (https://doi.org/10.5281/zenodo.12755414)68,69,70,71. A website (http://www.spatialprism.org) is available to provide a clear understanding of PRISM’s capabilities.

Code availability

Source code is provided in a GitHub repository (https://github.com/HuangLab-PKU/PRISM-Code for gene-calling pipeline and https://github.com/HuangLab-PKU/PRISM-Analysis for post-gene-calling analysis).

- Advertisement -

References

  1. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article 
    PubMed 

    Google Scholar 

    - Advertisement -
  2. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  3. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  6. Cao, J. et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat. Biotechnol. 42, 1735–1746 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  7. Liu, L. et al. Spatiotemporal omics for biology and medicine. Cell 187, 4488–4519 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  10. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  11. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  13. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  15. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  16. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  17. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  18. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  19. Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  21. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  25. Sountoulidis, A. et al. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol. 18, e3000675 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Chang, T. et al. Rapid and signal crowdedness-robust in situ sequencing through hybrid block coding. Proc. Natl Acad. Sci. USA 120, e2309227120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622, 552–561 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Vu, T. et al. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat. Commun. 13, 169 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  31. Hong, F. et al. Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nat. Methods 21, 331–341 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Deng, R. et al. DNA-sequence-encoded rolling circle amplicon for single-cell RNA imaging. Chem 4, 1373–1386 (2018).

    Article 
    CAS 

    Google Scholar 

  33. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  36. Le, T. N. et al. GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx homeobox transcription factors. J. Neurosci. 37, 8816–8829 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Zhou, T. et al. Spatiotemporal characterization of human early intervertebral disc formation at single-cell resolution. Adv. Sci. 10, 2206296 (2023).

    Article 
    CAS 

    Google Scholar 

  38. Nóbrega-Pereira, S. et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Striedter, G. F. & Northcutt, R. G. The independent evolution of dorsal pallia in multiple vertebrate lineages. Brain Behav. Evol. 96, 200–211 (2021).

    Article 
    PubMed 

    Google Scholar 

  40. Kaiser, K. et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat. Commun. 10, 1498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  42. Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  43. Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. Chitra, U. et al. Mapping the topography of spatial gene expression with interpretable deep learning. Nat. Methods 22, 298–309 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423 (2022).

    Article 
    PubMed 

    Google Scholar 

  46. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. So, J., Kim, A., Lee, S.-H. & Shin, D. Liver progenitor cell-driven liver regeneration. Exp. Mol. Med 52, 1230–1238 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Liu, K., Wang, F.-S. & Xu, R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol. Immunol. 18, 38–44 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  49. Wang, Y. et al. Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment. Theranostics 12, 4163–4180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  50. Tang, Z. et al. Spatial transcriptomics reveals tryptophan metabolism restricting maturation of intratumoral tertiary lymphoid structures. Cancer Cell 43, 1025–1044 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  51. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proceedings of the 2018 International Conference of Medical Image Computing and Computer Assisted Intervention (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) (Springer, 2018).

  52. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (eds Ross, A., Cox, D. & McCloskey, S.) (IEEE, 2020).

  53. Raj, A., Van Den Bogaard, P., Rifkin, S. A., Van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Liu, S. et al. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res. 49, e58 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Marras, S. A. E., Bushkin, Y. & Tyagi, S. High-fidelity amplified FISH for the detection and allelic discrimination of single mRNA molecules. Proc. Natl Acad. Sci. USA 116, 13921–13926 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  56. Smith, K. et al. CIDRE: an illumination-correction method for optical microscopy. Nat. Methods 12, 404–406 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  57. Chalfoun, J. et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep. 7, 4988 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Saunders, R. A. et al. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624217 (2024).

  60. Wheat, J. C. et al. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature 583, 431–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  61. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  62. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article 

    Google Scholar 

  63. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  64. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  65. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2005).

    Google Scholar 

  66. Reina-Campos, M. et al. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 639, 483–492 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  67. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1–12 (2022).

    CAS 

    Google Scholar 

  68. Chang, T. et al. PRISM: 2D HCC raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.13208941 (2024).

  69. Chang, T. et al. PRISM: 2D embryo (30plex and 64plex) raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.13219763 (2024).

  70. Chang, T. et al. PRISM: 3D mouse brain raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.12673246 (2024).

  71. Chang, T. et al. PRISM: analysis related data. Zenodo https://doi.org/10.5281/zenodo.12755414 (2024).

Download references

Acknowledgements

We thank Y. Liang of the State Key Laboratory of Membrane Biology and L. Fu of the School of Life Sciences and National Biomedical Imaging Center at Peking University for assistance with confocal microscopy imaging. We thank L. Wang for experimental assistance. This work was supported by grants from the National Natural Science Foundation of China (T2188102 to Y.H. and T2225005 to J.W.), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202401 to Y.H.), Noncommunicable Chronic Diseases National Science and Technology Major Project (2023ZD0520400 to C.Z.), Beijing Municipal Science and Technology Commission Grant (Z221100007022003 to Y.H.), Ministry of Science and Technology Grant (2018YFA0800200 to J.W.) and Clinical Medicine Plus X Young Scholars Project of Peking University, from the Fundamental Research Funds for the Central Universities (PKU2024LCXQ020 and PKU2025PKULCXQ023 to C.Z.).

Author information

Author notes

  1. These authors contributed equally: Tianyi Chang, Shihui Zhao, Kunyue Deng, Zhizhao Liao, Mingchuan Tang.

Authors and Affiliations

  1. Biomedical Pioneering Innovation Center (BIOPIC), Peking University International Cancer Institute, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

    Tianyi Chang, Shihui Zhao, Kunyue Deng, Zhizhao Liao, Mingchuan Tang, Yanxi Zhu, Wuji Han, Chenxi Yu, Wenyi Fan, Mengcheng Jiang, Guanbo Wang, Yuhong Pang, Chunhong Zheng & Yanyi Huang

  2. College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China

    Shihui Zhao, Kunyue Deng & Yanyi Huang

  3. Changping Laboratory, Beijing, China

    Zhizhao Liao, Guanbo Wang, Jianbin Wang & Yanyi Huang

  4. Yuanpei College, Peking University, Beijing, China

    Mingchuan Tang & Wuji Han

  5. Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China

    Guanbo Wang & Yanyi Huang

  6. Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China

    Dongfang Liu & Jirun Peng

  7. Ninth School of Clinical Medicine, Peking University, Beijing, China

    Jirun Peng

  8. School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

    Peng Fei

  9. School of Life Sciences, Tsinghua University, Beijing, China

    Jianbin Wang

  10. State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Cell & Gene Therapy for Solid Tumor, Peking University Cancer Hospital and Institute, Beijing, China

    Chunhong Zheng

Authors

  1. Tianyi Chang
  2. Shihui Zhao
  3. Kunyue Deng
  4. Zhizhao Liao
  5. Mingchuan Tang
  6. Yanxi Zhu
  7. Wuji Han
  8. Chenxi Yu
  9. Wenyi Fan
  10. Mengcheng Jiang
  11. Guanbo Wang
  12. Dongfang Liu
  13. Jirun Peng
  14. Yuhong Pang
  15. Peng Fei
  16. Jianbin Wang
  17. Chunhong Zheng
  18. Yanyi Huang

Contributions

Conceptualization, T.C., M.J. and Y.H. Experiment, T.C., S.Z., K.D., Z.L., M.T., Y.Z., C.Y., W.F., G.W., D.L., J.P., Y.P., P.F. and J.W. Data analysis, T.C., M.T., Y.Z., W.H., Z.L., S.Z., K.D., C.Z. and Y.H. Writing, T.C., S.Z., K.D., Z.L., M.T., C.Z. and Y.H.

Corresponding authors

Correspondence to
Chunhong Zheng or Yanyi Huang.

Ethics declarations

Competing interests

Y.H., T.C., S.Z., K.D., M.T., Z.L., M.J. and W.H. have applied for a patent (CN117265074A) related to this work. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Kok Hao Chen, Sanjay Tyagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Radius vector filtering.

a, Selection of different intersecting planes in color space. Different planes correspond to different barcode vector sets with various numbers of vectors. A well-balanced barcode set should consider both the number of barcodes and the neighbor angle. The neighbor angle, which indicates the dissimilarity between the closest barcodes (vectors), must be large enough to ensure accurate decoding of the barcodes. b, Workflow of signal spot decoding. In color space (Ch1, Ch2, Ch3), all spots were L1-normalized to the sum value of (Ch1+Ch2+Ch3), making all spots sum into ‘1’. All spots were therefore projected onto a 2-D plane. Subsequently, the Ch4 value was added as the third axis, creating a new 3-D color space that visualizes all 30 clusters. c, PRISM barcode after radius vector filtering is robust to bias from heterogeneous amplification in RCA. Within the same barcode, absolute values of specific channel may vary between different rolling circle DNA nanoballs due to RCA heterogeneity, but the ratios of these values remain consistent. Scale bar: 500 nm.

Extended Data Fig. 2 Creation of color space.

Raw intensity from four channels was extracted for each spot. After intra-spot L1-normalization by sum (Ch1+Ch2+Ch3), intensity information from four channels (Ch1′, Ch2′, Ch3′, Ch4′) was converted into three-dimensional coordinates in color space (X in color space: 2*Ch3′-1, Y in color space: Ch2′-Ch1′, Z in color space: Ch4′). Scale bar: 10 µm.

Extended Data Fig. 3 Gene calling workflow.

a, Intensity distribution of each channel after normalization. A small random number was introduced to coordinates from each spot to improve the assessment of cluster distribution. This modification results in the formation of a pseudo-Gaussian distribution at endpoint ‘0’ and ‘1’ (for example barcode 4000, 0040), allowing for an equal evaluation between these endpoint clusters and other clusters. b, Intensity distribution of Ch1, Ch2 and Ch3 under Ch4=0 and Ch4=1, respectively. c, Gene calling based on spots position in color space. The distribution of the 30 barcode clusters can be observed through different cross-sections and projections. Gaussian fitting was utilized to measure the separation between adjacent clusters. Manual delineation of three-dimensional boundaries for each cluster in the color space was performed for gene calling.

Extended Data Fig. 4 Spatial expression patterns of 30 called genes for mouse brain coronal section.

For better visualization, the transcripts are down-sampled (coarse-grained). The dynamic range of transcripts density (counts per 100 x 100 pixel2, 1 pixel = 0.1625 µm) is represented as shown in the colormap in each image. Scale bar: 1 mm.

Extended Data Fig. 5 PRISM decoding accuracy characterization.

a, Experimental workflow of PRISM decoding accuracy check. After PRISM fluorescent staining and gene identification, the imaging probes were stripped away. Subsequently, fluorescently labeled nanoball-check probe that specifically targeted at rolling circle nanoballs (targeting mRNA-binding region, shown as magenta) of individual gene was applied to reveal the ground truth position of nanoball. This process was performed iteratively within a flow cell for checking different genes. We then overlapped the decoded specific gene coordinate (from PRISM experiment) with corresponding gene’s nanoball-check image one-by-one to examine decoding accuracy. b, Decoding accuracy calculation. The decoding accuracy for each gene was calculated as the ratio of PRISM-decoded spots overlapping with nanoball-check-probe stained spots to the total PRISM-decoded spots. Fluorescent intensity value was obtained by reading the nanoball-check image using coordinates decoded by PRISM. The intensity frequency distribution was plotted to characterize the decoding accuracy. Correctly decoded spots (overlapping with nanoball-check-probe stained spots) formed a near-Gaussian distribution (right peak), while false-decoded spots (‘non-overlapping’) appeared as a sharp left peak. The proportion of non-overlapping coordinates defined the false decoding rate. Four different barcodes/genes were analyzed, yielding an average false decoding rate of 4.33%. Scale bar: 1 mm.

Extended Data Fig. 6 Reagent penetration in thick tissue.

Seven distinct regions (200 µm x 200 µm x 100 µm) within the mouse brain were selected for conducting a reagent penetration test. The penetration performance in thick tissue was reflected by overall extracted signal distribution along z-axis. Thickness: 100 µm, Scale bar: 30 µm.

Extended Data Fig. 7 PRISM barcode expansion to 64-plex by increasing intensity levels.

Ch1, Ch2 and Ch3 were quantized into fifths (0, 1/5, 2/5, 3/5, 4/5 and 5/5) and Ch4 was divided into high (2), low (1) and zero (0). This expansion resulted in an increased coding capacity of 64 (21*3+1).

Extended Data Fig. 8 Spatial expression pattern comparison between 64-plex PRISM and MOSTA database.

This comparison was performed using sagittal sections of mouse embryos at E14.5 stage. Selected data has a similar sectioning position (matched anatomical regions) as our data. Scale bar: 1 mm.

Extended Data Fig. 9 PRISM decoding accuracy characterization for 64-plex assay on mouse brain tissue.

Experiment and analysis were performed the same with Extended Data Fig. 5. Briefly, after PRISM fluorescent staining and gene identification, the imaging probes were stripped away. Subsequently, fluorescently-labeled nanoball-check probe that specifically targeted sat rolling circle nanoballs (targeting mRNA-binding region) of individual gene was applied to reveal the ground truth position of nanoball. The decoding accuracy for each gene was calculated as the ratio of PRISM-decoded spots overlapping with nanoball-check-probe stained spots to the total PRISM-decoded spots. The proportion of non-overlapping coordinates defined the false decoding rate. The average false decoding rate is calculated to be 4.20%. Scale bar: 1 mm.

Extended Data Fig. 10 PRISM decoding accuracy characterization for 64-plex assay on mouse embryo tissue.

Experiment and analysis were performed the same with Extended Data Fig. 5. Briefly, after PRISM fluorescent staining and gene identification, the imaging probes were stripped away. Subsequently, fluorescently-labeled nanoball-check probe that specifically targeted at rolling circle nanoballs (targeting mRNA-binding region) of individual gene was applied to reveal the ground truth position of nanoball. The decoding accuracy for each gene was calculated as the ratio of PRISM-decoded spots overlapping with nanoball-check-probe stained spots to the total PRISM-decoded spots. The proportion of non-overlapping coordinates defined the false decoding rate. The average false decoding rate is calculated to be 2.40%. Scale bar: 1 mm.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Zhao, S., Deng, K. et al. High-plex spatial RNA imaging in one round with conventional microscopes using color-intensity barcodes.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02883-7

Read More

- Advertisement -

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Popular Articles