Friday, October 31, 2025

Top 5 This Week

Related Posts

Mesenchymal thymic niche cells enable regeneration of the adult thymus and T cell immunity

- Advertisement -

0:00

- Advertisement -

Data availability

scRNA-seq data generated for this work have been deposited into the Gene Expression Omnibus database (GSE206459). Three-photon fluorescence microscopy images have been deposited into Zenodo: https://doi.org/10.5281/zenodo.15278001 (ref. 86). All other data, reagents and protocols will be made available upon reasonable request to the corresponding authors. Source data are provided with this paper.

Code availability

All code for the scRNA-seq analysis is available at https://github.com/kharchenkolab/thymus-mesenchyme. The code for image analysis and quantification of the three-photon fluorescence microscopy is available at https://github.com/LinLabWellmanCenterForPhotomedicine/Three-photon-Mesenchymal-thymic-niche.

- Advertisement -

References

  1. Palmer, S., Albergante, L., Blackburn, C. C. & Newman, T. J. Thymic involution and rising disease incidence with age. Proc. Natl Acad. Sci. USA 115, 1883–1888 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

    - Advertisement -
  2. Wang, W., Thomas, R., Sizova, O. & Su, D. M. Thymic function associated with cancer development, relapse, and antitumor immunity—a mini-review. Front. Immunol. 11, 773 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  3. Yoshida, K. et al. Aging-related changes in human T-cell repertoire over 20years delineated by deep sequencing of peripheral T-cell receptors. Exp. Gerontol. 96, 29–37 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  4. Egorov, E. S. et al. The changing landscape of naive T cell receptor repertoire with human aging. Front. Immunol. 9, 1618 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Kooshesh, K. A., Foy, B. H., Sykes, D. B., Gustafsson, K. & Scadden, D. T. Health consequences of thymus removal in adults. N. Engl. J. Med. 389, 406–417 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  6. Bosch, M., Khan, F. M. & Storek, J. Immune reconstitution after hematopoietic cell transplantation. Curr. Opin. Hematol. 19, 324–335 (2012).

    Article 
    PubMed 

    Google Scholar 

  7. Curtis, R. E. et al. Solid cancers after bone marrow transplantation. N. Engl. J. Med. 336, 897–904 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  8. Maraninchi, D. et al. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 2, 175–178 (1987).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  9. Storek, J., Gooley, T., Witherspoon, R. P., Sullivan, K. M. & Storb, R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am. J. Hematol. 54, 131–138 (1997).

    3.0.CO;2-Y” data-track-item_id=”10.1002/(SICI)1096-8652(199702)54:2<131::AID-AJH6>3.0.CO;2-Y” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-8652%28199702%2954%3A2%3C131%3A%3AAID-AJH6%3E3.0.CO%3B2-Y” aria-label=”Article reference 9″ data-doi=”10.1002/(SICI)1096-8652(199702)54:2<131::AID-AJH6>3.0.CO;2-Y”>Article 
    PubMed 
    CAS 

    Google Scholar 

  10. Blazar, B. R., Murphy, W. J. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 443–458 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  11. Small, T. N. et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 93, 467–480 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  12. Petrie, H. T. & Zuniga-Pflucker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  13. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  14. Bleul, C. C. & Boehm, T. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol. 30, 3371–3379 (2000).

    3.0.CO;2-L” data-track-item_id=”10.1002/1521-4141(2000012)30:12<3371::AID-IMMU3371>3.0.CO;2-L” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-4141%282000012%2930%3A12%3C3371%3A%3AAID-IMMU3371%3E3.0.CO%3B2-L” aria-label=”Article reference 14″ data-doi=”10.1002/1521-4141(2000012)30:12<3371::AID-IMMU3371>3.0.CO;2-L”>Article 
    PubMed 
    CAS 

    Google Scholar 

  15. Felli, M. P. et al. Expression pattern of Notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand–receptor interactions in intrathymic T cell development. Int. Immunol. 11, 1017–1025 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  16. Antonia, S. J., Geiger, T., Miller, J. & Flavell, R. A. Mechanisms of immune tolerance induction through the thymic expression of a peripheral tissue-specific protein. Int. Immunol. 7, 715–725 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  17. Lo, D. & Sprent, J. Identity of cells that imprint H-2-restricted T-cell specificity in the thymus. Nature 319, 672–675 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  18. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  19. Buono, M. et al. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat. Cell Biol. 18, 157–167 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  20. Wertheimer, T. et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci. Immunol. 3, eaal2736 (2018).

  21. Buono, M., Thezenas, M. L., Ceroni, A., Fischer, R. & Nerlov, C. Bi-directional signaling by membrane-bound KitL induces proliferation and coordinates thymic endothelial cell and thymocyte expansion. Nat. Commun. 9, 4685 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Dudakov, J. A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336, 91–95 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  23. Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Pievani, A. et al. Harnessing mesenchymal stromal cells for the engineering of human hematopoietic niches. Front. Immunol. 12, 631279 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  25. Seandel, M. et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc. Natl Acad. Sci. USA 105, 19288–19293 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  26. Amagai, T., Itoi, M. & Kondo, Y. Limited development capacity of the earliest embryonic murine thymus. Eur. J. Immunol. 25, 757–762 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  27. Anderson, G., Anderson, K. L., Tchilian, E. Z., Owen, J. J. & Jenkinson, E. J. Fibroblast dependency during early thymocyte development maps to the CD25+ CD44+ stage and involves interactions with fibroblast matrix molecules. Eur. J. Immunol. 27, 1200–1206 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  28. Itoi, M. & Amagai, T. Inductive role of fibroblastic cell lines in development of the mouse thymus anlage in organ culture. Cell Immunol. 183, 32–41 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  29. Jenkinson, W. E., Rossi, S. W., Parnell, S. M., Jenkinson, E. J. & Anderson, G. PDGFRα-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood 109, 954–960 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  30. Suniara, R. K., Jenkinson, E. J. & Owen, J. J. An essential role for thymic mesenchyme in early T cell development. J. Exp. Med. 191, 1051–1056 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  31. Gray, D. H. et al. A unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J. Immunol. 178, 4956–4965 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  32. Patenaude, J. & Perreault, C. Thymic mesenchymal cells have a distinct transcriptomic profile. J. Immunol. 196, 4760–4770 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  33. Handel, A. E. et al. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. Sci. Adv. 8, eabm9844 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  34. Nitta, T. & Takayanagi, H. Non-epithelial thymic stromal cells: unsung heroes in thymus organogenesis and T cell development. Front. Immunol. 11, 620894 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  35. Sun, L. et al. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci. Rep. 5, 14871 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  36. Nitta, T. et al. Fibroblasts as a source of self-antigens for central immune tolerance. Nat. Immunol. 21, 1172–1180 (2020).

    Article 
    PubMed 

    Google Scholar 

  37. Bornstein, C. et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559, 622–626 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  38. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

  39. Kanamori-Katayama, M. et al. LRRN4 and UPK3B are markers of primary mesothelial cells. PLoS ONE 6, e25391 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  40. Erickson, A. G., Kameneva, P. & Adameyko, I. The transcriptional portraits of the neural crest at the individual cell level. Semin. Cell Dev. Biol. 138, 68–80 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Foster, K. et al. Contribution of neural crest-derived cells in the embryonic and adult thymus. J. Immunol. 180, 3183–3189 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  42. Muller, S. M. et al. Neural crest origin of perivascular mesenchyme in the adult thymus. J. Immunol. 180, 5344–5351 (2008).

    Article 
    PubMed 

    Google Scholar 

  43. Grueneberg, D. A., Natesan, S., Alexandre, C. & Gilman, M. Z. Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257, 1089–1095 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  44. Plotkin, J., Prockop, S. E., Lepique, A. & Petrie, H. T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  45. Kenins, L., Gill, J. W., Boyd, R. L., Hollander, G. A. & Wodnar-Filipowicz, A. Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J. Exp. Med. 205, 523–531 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  46. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  47. Zlotoff, D. A. et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897–1905 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  48. Gordy, L. E. et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J. Immunol. 187, 6335–6345 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  49. Haunerdinger, V. et al. Novel combination of surface markers for the reliable and comprehensive identification of human thymic epithelial cells by flow cytometry: quantitation and transcriptional characterization of thymic stroma in a pediatric cohort. Front. Immunol. 12, 740047 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  50. Lax, S. et al. CD248 expression on mesenchymal stromal cells is required for post-natal and infection-dependent thymus remodelling and regeneration. FEBS Open Bio 2, 187–190 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  51. Coutu, D. L., Kokkaliaris, K. D., Kunz, L. & Schroeder, T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat. Biotechnol. 35, 1202–1210 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  52. Zhu, D., Mackenzie, N. C., Millan, J. L., Farquharson, C. & MacRae, V. E. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 6, e19595 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  53. Steinmann, G. G. Changes in the human thymus during aging. Curr. Top. Pathol. 75, 43–88 (1986).

    PubMed 
    CAS 

    Google Scholar 

  54. Steinmann, G. G., Klaus, B. & Muller-Hermelink, H. K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand. J. Immunol. 22, 563–575 (1985).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  55. Yoshida, R. et al. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem. 272, 13803–13809 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  56. Seyedhassantehrani, N. et al. Intravital two-photon microscopy of the native mouse thymus. PLoS ONE 19, e0307962 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  57. Sanos, S. L., Nowak, J., Fallet, M. & Bajenoff, M. Stromal cell networks regulate thymocyte migration and dendritic cell behavior in the thymus. J. Immunol. 186, 2835–2841 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  58. Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nat. Immunol. 10, 823–830 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  60. Diao, S. H. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).

    Article 
    CAS 

    Google Scholar 

  61. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  62. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  63. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  64. Severe, N. et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell 25, 570–583 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  65. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  66. Himburg, H. A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16, 475–482 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  67. Chute, J. P. et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109, 2365–2372 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  68. Awong, G. et al. Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 122, 4210–4219 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  69. Eggenhofer, E. et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front. Immunol. 3, 297 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  70. Muschler, G. F. et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin. Orthop. Relat. Res. 242−251 (2005).

  71. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  72. Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  73. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  75. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  76. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  77. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  78. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  79. Chevalier, C., Nicolas, J. F. & Petit, A. C. Preparation and delivery of 4-hydroxy-tamoxifen for clonal and polyclonal labeling of cells of the surface ectoderm, skin, and hair follicle. Methods Mol. Biol. 1195, 239–245 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  80. Yu, V. W. et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J. Exp. Med. 212, 759–774 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  81. Gustafsson, K. & Scadden, D. T. Isolation of thymus stromal cells from human and murine tissue. Methods Mol. Biol. 2567, 191–201 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  82. Shah, N. J. et al. An injectable bone marrow-like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. 37, 293–302 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  83. Lynch, H. E. & Sempowski, G. D. Molecular measurement of T cell receptor excision circles. Methods Mol. Biol. 979, 147–159 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  84. Kokkaliaris, K. D. et al. Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood 136, 2296–2307 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  86. Mirsanaye, K., Gustafsson, K. & Lin, C. Three-photon fluorescence images used in the manuscript titled: “Mesenchymal thymic niche cells enable regeneration of the adult thymus and T cell immunity.”. Zenodo https://doi.org/10.5281/zenodo.15278001 (2025).

Download references

Acknowledgements

We thank O. J. Benavidez from the Division of Pediatric-Congenital Cardiology at Massachusetts General Hospital for providing human thymic tissue. We were supported with expert technical assistance by the HSCI-CRM Flow Cytometry facility and the CRM Multiphoton Microscopy Core at Massachusetts General Hospital and the Bauer Core Facility at Harvard University. We thank Y. Kfoury for sharing her Cas9–GFP bone marrow stroma. We acknowledge S. Voinea for providing assistance with coding. We thank I. Adameyko for assistance in identifying neural crest progenitors in the dataset. K.G. and N.B. were supported by the Swedish Research Council. N.S. was a recipient of the AACR-Millennium Fellowship in Prostate Cancer Research. S.I. was supported by the Ministry of Science and Higher Education of the Russian Federation (grant number 075-15-2020-784). D.T.S. was supported by the Gerald and Darlene Jordan Professor Chair, Tracey and Craig A. Huff, the Harvard Stem Cell Institute, and PO1 HL131477, PO1 HL183483 and U19 HL156247. C.P.L. was supported by R01HL166266, R01NS127808, RC2DK131963 and P01HL142494. K.M. was a recipient of the Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

Author information

Author notes

  1. Peter V. Kharchenko

    Present address: Altos Labs, San Diego, CA, USA

Authors and Affiliations

  1. Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA

    Karin Gustafsson, Kameron A. Kooshesh, Ninib Baryawno, Anna Kiem, Nicolas Severe, Ting Zhao, Elizabeth W. Scadden, Hayalneh Gessessew, Konstantinos D. Kokkaliaris & David T. Scadden

  2. Harvard Stem Cell Institute, Cambridge, MA, USA

    Karin Gustafsson, Kameron A. Kooshesh, Ninib Baryawno, Anna Kiem, Nicolas Severe, Ting Zhao, Elizabeth W. Scadden, Hayalneh Gessessew, Konstantinos D. Kokkaliaris, Peter V. Kharchenko & David T. Scadden

  3. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA

    Karin Gustafsson, Kameron A. Kooshesh, Ninib Baryawno, Anna Kiem, Nicolas Severe, Ting Zhao, Elizabeth W. Scadden, Hayalneh Gessessew, Konstantinos D. Kokkaliaris & David T. Scadden

  4. Research Institute of Personalized Medicine, National Center for Personalized Medicine of Endocrine Diseases, The National Medical Research Center for Endocrinology, Moscow, Russia

    Sergey Isaev

  5. Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria

    Sergey Isaev

  6. Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

    Kamdin Mirsanaye & Charles P. Lin

  7. Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany

    Johanna Hofmann & Konstantinos D. Kokkaliaris

  8. Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany

    Johanna Hofmann & Konstantinos D. Kokkaliaris

  9. Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany

    Johanna Hofmann

  10. Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

    Ninib Baryawno

  11. Department of Bioengineering, NSF-CREST Center for Cellular and Biomolecular Machines, and Health Science Research Institute, University of California, Merced, Merced, CA, USA

    Joel A. Spencer, Christian Burns & Kumaran Akilan

  12. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

    Nikolaos Barkas & Peter V. Kharchenko

  13. German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory and German Cancer Research Center (DKFZ), Heidelberg, Germany

    Konstantinos D. Kokkaliaris

Authors

  1. Karin Gustafsson
  2. Sergey Isaev
  3. Kamdin Mirsanaye
  4. Johanna Hofmann
  5. Kameron A. Kooshesh
  6. Ninib Baryawno
  7. Anna Kiem
  8. Nicolas Severe
  9. Ting Zhao
  10. Elizabeth W. Scadden
  11. Joel A. Spencer
  12. Christian Burns
  13. Kumaran Akilan
  14. Nikolaos Barkas
  15. Hayalneh Gessessew
  16. Konstantinos D. Kokkaliaris
  17. Charles P. Lin
  18. Peter V. Kharchenko
  19. David T. Scadden

Contributions

K.G., N.B. and D.T.S. conceived the study. K.G. designed and performed most of the experiments, with technical assistance from and discussions with N.B., N.S., E.W.S., A.K., J.A.S., C.B., K.A., N.B., T.Z. and H.G. S.I. and P.V.K. performed the scRNA-seq analysis. K.A.K. designed and performed the CRISPR knockout studies. K.D.K. and J.H. developed and performed the three-dimensional tissue-wide confocal thymus imaging. C.P.L. and K.M. developed and performed the three-photon microscopy. K.G., S.I., N.B., P.V.K., C.P.L. and D.T.S. interpreted the data and wrote the paper. All authors read, edited and approved the paper.

Corresponding authors

Correspondence to
Karin Gustafsson or David T. Scadden.

Ethics declarations

Competing interests

D.T.S. is a director and shareholder of Agios Therapeutics and Editas Medicines; a shareholder and founder of Fate Therapeutics and Stratus Therapeutics; a director, founder and shareholder of Lightning Biotechnology; a director of Sonata Theraepeutics; and a consultant for Simcere Zaiming and VCanBio. D.T.S. and K.G. are inventors of patent US20220143099A1. P.V.K. serves on the scientific advisory board for Celsius Therapeutics, Inc. and Biomage, Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flow sorting strategy and scRNA-seq overview of human and mouse thymic stroma.

(A) Gating strategy for flow cytometric sorting of human thymus stromal cells (CD45-CD235-Lineage-CD4-CD8-). Percentages refer to percent of parent gate. (B) Gating strategy for flow cytometric sorting of mouse thymus stromal cells (CD45-Ter119-). Percentages refer to percent of parent gate. (C) Distribution of number of expressed genes and number of UMIs per cell in the human and mouse data sets. (D) UMAP embedding of human thymus cell populations including CD3E + CD4 + CD8B + PTPRC+ hematopoietic cells with detailed annotation. (n = 3, total number of cells=21034) Three independent experiments. (E) Expression of marker genes for human hematopoietic cells visualized on joint embedding. All CD3E + CD4 + CD8B + PTPRC+ cells were excluded from future analysis. (F) UMAP embedding of mouse thymus cell populations including Cd3e + Cd4 + Cd8a+ Ptprc+ hematopoietic cells with detailed annotation. (n = 4, total number of cells=13952) Four independent experiments. (G) Expression of marker genes for mouse hematopoietic cells visualized on joint embedding. All Cd3e + Cd4 + Cd8a+ Ptprc+ cells were excluded from future analysis.

Extended Data Fig. 2 Marker and differential gene expression of thymic stromal subsets in human and mouse.

(A) The top most differentially expressed genes in each major human stromal cell subset shown as a dot plot. (B) Expression of marker genes for each major human stromal cell subset shown as a dot plot. (C) The top most differentially expressed genes in each major mouse stromal cell subset shown as a dot plot. (D) Expression of marker genes for each major mouse stromal cell subset shown as a dot plot. (E) Genes defining neural crest-like (NC) cells in mouse tissue shown as a dot plot. (F) Gating strategy for human thymic epithelial subsets. Only live, singlet cells are present in the data presented and percentages are of parent gate. cTECs are defined as EpCam+ Pdpn+CD49f + CD200-, immature mTECs as EpCam+ Pdpn+CD49f-CD200 + HLA-DRLow and mature mTECs as EpCam+ Pdpn+CD49f-CD200 + HLA-DRHi. (G) Representative histograms showing flow cytometric analysis of IL15, CCL19 and FLT3LG in human ECs, MCs and TECs. The various stromal cell populations were gated in accordance with the strategy presented in Extended Data Fig. 2F.

Extended Data Fig. 3 Gene expression programs delineate three ThyMC subsets in human and mouse.

(A) Dot plots displaying genes differentially expressed across human and mouse thymic ThyMC subsets. (B) Expression of marker genes CD248, PENK, COL15A1, POSTN that define each ThyMC subtype in human (left) and mouse (right). Presented as UMAP embeddings and bar graphs displaying expression in each cell type. Statistical significance is based on a two-sided DESeq2-based Wald test with Benjamini-Hochberg FDR control of these comparisons. (human n = 3, mouse n = 4, mean ± SEM). Human samples: CD248 CD248+ ThyMC vs. POSTN+ ThyMC **** p = 1.6×10−16. CD248+ ThyMC vs. COL15A1+ ThyMC **** p = 5.5×10−7. COL15A1 COL15A1+ ThyMC vs. POSTN+ ThyMC **** p = 3.2×10−16. COL15A1+ ThyMC vs. CD248+ ThyMC **** p = 1.1×10−16. POSTN POSTN+ ThyMC vs. COL15A1+ ThyMC **** p = 4.6×10−13. Mouse samples: Cd248 Cd248+ ThyMC vs. Postn+ ThyMC **** p = 7.9×10−36. Cd248+ ThyMC vs. Penk+ ThyMC **** p = 1.9×10−17. Penk Penk+ ThyMC vs. Cd248+ ThyMC *** p = 3.3×10−4. Penk+ ThyMC vs. Postn+ ThyMC * p = 1.9×10−2. Postn Postn+ ThyMC vs. Penk+ ThyMC **** p = 2.7×10−5. Postn+ ThyMC vs. Cd248+ ThyMC **** p = 1.9×10−11. (C) Normalized enrichment score for GSEA pathways specific to mouse Postn+ ThyMC presented as UMAP. (D) Expression of Ccl19, Flt3l, and Il15 across ThyMC subsets and other stromal cell types. (n = 4, mean ± SEM). Statistical significance is based on a two-sided DESeq2-based Wald test with Benjamini-Hochberg FDR control of these comparisons. Ccl19: Postn+ ThyMC vs. EC **** 1.49×10−8, Postn+ ThyMC vs. Cd248+ ThyMC **** p = 7.2×10−10, Postn+ ThyMC vs. vSMC **** p = 6.8×10−8, Postn+ ThyMC vs. PC ** p = 6.9×10−3, Postn+ ThyMC vs. Lrrn4+ **** p = 5.8×10−6, Postn+ ThyMC vs. Tuft cells **** p = 1.5×10−8. Flt3l: Postn+ ThyMC vs. EC **** p = 1.1×10−5, Postn+ ThyMC vs. Cd248+ ThyMC **** p = 2.6×10−6, Postn+ ThyMC vs. Penk+ ThyMC ** p = 6.9×10−3, Postn+ ThyMC vs. vSMC **** p = 5.6×10−6, Postn+ ThyMC vs. PC ** p = 5.0×10−3, Postn+ ThyMC vs. Lrrn4+ ** p = 2.4×10−3, Postn+ ThyMC vs. cTEC/mTECi **** p = 7.6×10−8, Postn+ ThyMC vs. mTECm ****p = 3.8×10−4, Postn+ ThyMC vs. Tuft cells ****p = 3.5×10−5. Il15 Postn+ ThyMC vs. Cd248+ ThyMC **** p = 1.1×10−9, Postn+ ThyMC vs. Penk+ ThyMC **** p = 3.7×10−5, Postn+ ThyMC vs. vSMC *** p = 9.3×10−4, Postn+ ThyMC vs. PC * p = 1.2×10−2, Postn+ ThyMC vs. Lrrn4+ *** p = 2.6×10−3, Postn+ ThyMC vs. cTEC/mTECi *** p = 4.3×10−4. Postn+ ThyMC vs. Tuft cells ****p = 1.6×10−4.

Source data

Extended Data Fig. 4 Cross-dataset integration confirms conserved ThyMC subsets in human and mouse.

(A) UMAP representation of conos joint embedding showing overlap between our human samples (colored dots) and a publicly available human dataset (gray dots). ThyMCs colored by origin (left). Overlays of individual population markers (right) indicate transcriptionally similar populations between the two sample sets. (B) UMAP of a joint conos embedding with our mouse dataset (blue dots) and publicly available mouse samples (orange dots) demonstrating significant overlap in identified populations (left panel). Annotation of CD248+ ThyMCs, Penk+ ThyMCs and Postn+ ThyMCs on joint UMAP representation of our mouse cells and a publicly available dataset (right panel). (C) UMAPs showing the expression of marker genes Cd248, Penk, and Postn that define each ThyMC subtype presented as joint conos embeddings with our dataset and publicly available mouse samples. (D) Conos joint embedding UMAP showing clustering of ThyMCs from a publicly available mouse dataset (orange dots) and our mouse samples (blue dots) (left panel). Annotation of CD248+ ThyMCs, Penk+ ThyMCs and Postn+ ThyMCs on joint UMAP representation of our mouse cells and a publicly available dataset (middle panel). Joint UMAP showing the annotation of ThyMCs identified by Handel et. al (right panel). (E) UMAPs showing the expression of marker genes Cd248, Penk, and Postn that define each ThyMC subtype presented as joint conos embeddings with our dataset and the mouse dataset published by Handel et al.

Extended Data Fig. 5 Validation of mouse ThyMC markers by flow cytometry and fibroblast colony-forming capacity.

(A) UMAP embedding of mouse thymus cell populations including Cd3e + Cd4 + Cd8b+ Ptprc+ hematopoietic cells with detailed annotation (left). ThyMC marker genes Cd99l2, Itgb5, Pdgfra and Cd248 presented as UMAP graphs (right). (n = 4) Four independent experiments. (B) FACS plot validating the presence of both CD99l2 and Itgb5 at the protein level on non-hematopoietic, non-epithelial, non-endothelial thymic cells. (C) Flow cytometric plots demonstrating the overlap between CD99l2 and Itgb5 and other cell type defining markers. Labels to the right of the flow plots refer to parent gate and the percentages are of the parent gate. (D) Image of fixed and Giemsa stained CD45-Ter119-CD31- EpCam- CD99l2+ Itgb5+ ThyMCs grown in aMEM with 20% FBS under hypoxic conditions for 6 days (n = 3). Three independent experiments. (E) Bar graphs displaying colony forming ability of individually sorted CD45-Ter119-CD31- EpCam- CD99l2+ Itgb5+ and CD45-Ter119-CD31- EpCam- CD99l2- Itgb5- cells grown of 7 days in aMEM with 20% FBS under hypoxic conditions. (F) Bar graph representation of bone marrow and thymic ThyMCs fibroblast colony forming units (CFU-F) after 6 days of hypoxic culture in aMEM with 20% FBS (n = 6 per group, mean ± SEM). Two independent experiments. (G) Flow cytometric analysis confirmation at the protein level of CD248 and Pdgfra. (H) Validation of increased Postn expression by qPCR on sorted CD248+ ThyMC compared to CD248- ThyMC. Statistical significance was calculated by a two-sided, unpaired student’s t-test. n = 4, mean ± SEM, from two independent experiments. CD248+ ThyMC vs. CD248- ThyMC * p = 4.8×10−2.

Source data

Extended Data Fig. 6 Marker validation of Penk+ and Postn+ ThyMCs.

(A) Gating strategy for FACS analysis of mouse thymus tdTomato+ (Penk + ) ThyMCs in Penk-Cre-tdT mice. Percentages refer to percent of parent gate. (B) FACS plots showing overlap between tdTomato+ cells and thymic epithelium (EpCam), endothelium (CD31), hematopoietic cells (CD45), and myeloid cells (F4/80, CD11b) in Penk-Cre-tdT mice. (C) Representative histograms from flow cytometric analysis of intracellular Cre protein staining in hematopoietic cells (CD45) and ThyMC (CD248-). (D) Bar graphs showing Postn and Ccl19 expression as determined by qPCR on sorted tdTomato+ (Penk ThyMC) and tdTomato- (Postn+ ThyMC) cells from Penk-Cre-tdT mice (n = 4, mean ± SEM). Two independent experiments. (E) Gating strategy for flow cytometric analysis of mouse thymus tdTomato+ (Postn + ) ThyMCs after in vivo administration of 4-hydroxytamoxifen in Postn-CreERT-tdT mice. Percentages refer to percent of parent gate. (F) Flow cytometric analysis of overlap between tdTomato+ cells and thymic epithelium (EpCam), endothelium (CD31), and hematopoietic cells (CD45) in Postn-CreER-tdT mice. (G) Bar graphs showing Postn and Ccl19 expression as determined by qPCR on sorted tdTomato+ (Postn+ ThyMC) and tdTomato- (Penk+ ThyMC) cells from 4-hydroxytamoxifen induced Postn-CreERT-tdT mice (n = 4, mean ± SEM). Two independent experiments. (H) Detailed ThyMC annotation presented as ThyMC specific UMAP embedding (left). UMAP showing expression of marker genes DPP4 (Dpp4), PDPN (Pdpn), LTBR (Ltbr), S100A4 (S100a4) in human (top) and mouse (bottom). (I) Representative histogram showing staining of S100A4 and Ltbr on thymic ThyMCs from Penk-Cre-tdT mice. (J) Bar graphs showing mean fluorescent intensity (MFI) on CD248+ ThyMC, Penk+ ThyMC and Postn+ ThyMC as determined by flow cytometry in Penk-Cre-tdT mice (n = 3, mean ± SEM). Two independent experiments. (K) FACS plots showing staining for DPP4 and Pdpn on CD248+ ThyMC, Penk+ ThyMC and Postn+ ThyMC from Penk-Cre-tdT mice. (L) Bar graphs showing the percentage of phenotypic cortical fibroblasts (cFib; DPP4+ Pdpn + ) and medullary fibroblasts (mFib; Dpp4- Pdpn + ) within CD248+ ThyMC, Penk+ ThyMC and Postn+ ThyMC subsets from Penk-Cre-tdT mice. (n = 3, mean ± SEM). Two independent experiments. Statistical significance is based on beta regression with Benjamini-Hochberg FDR control of these comparisons. Statistical significance is using a two-sided Beta regression-based Wald test with Benjamini-Hochberg FDR control of these comparisons. CD248+ ThyMC: cFib vs. mFib **** p = 3.8×10−136. Penk+ ThyMC: cFib vs. mFib **** p = 2.1×10−65. Postn+ ThyMC: cFib vs. mFib p = 0.21.

Source data

Extended Data Fig. 7 Thymus stroma compositional changes with transplantation, IL7R KO, and aging.

(A) UMAP embedding showing stromal cell (Cd3e-, Cd4-, Cd8a-, Ptprc-) compositional differences between Control (n = 4, total number of stromal cells=5451), Transplantation (n = 3, total number of stromal cells=8057), IL7RKO (n = 4, total number of stromal cells=4551) and Aging (n = 4, total number of stromal cells=16178) samples. (B) Bar graphs comparing proportional shifts of different stromal cell subsets between Control, Transplantation, IL7RKO and Aging samples as determined by scRNAseq. (Control n = 4, Transplantation n = 3, IL7RKO n = 4, Aging n = 4, mean ± SEM). NCs were excluded from this analysis due to the populations small size (6.5 cells per sample in Controls). Statistical significance is using a two-sided Beta regression-based Wald test with Benjamini-Hochberg FDR control of these comparisons. EC: Control vs. Aged ** p = 7.1×10−3. PC: Control vs. IL7R KO ** p = 3.1×10−3, Control vs. Aged ** p = 1.7×10−3. vSMC: Control vs. Aged ** p = 6.0×10−3. (C) Dot plot showing expression of neural crest-like (NC) cell marker genes (rows) across different stress states (columns). Total number of NCs per condition noted in parenthesis. (D) Expression of marker genes defining mouse osteogenic smooth muscle cells (oSMC) presented as dot plot. (E) Bar graphs showing the difference in proportions within the MC population of Penk+ ThyMCs in Control, Transplantation, and Aging samples as determined by scRNAseq. (Control n = 4, Transplantation n = 3, Aging n = 4, mean ± SEM). Statistical significance is using a two-sided Beta regression-based Wald test with Benjamini-Hochberg FDR control of these comparisons. Control vs. Transplant **** p = 2.0×10−28, Control vs. Aged **** p = 3.0×10−8. (F) Bar graphs showing Postn and Ccl19 expression as determined by qPCR on sorted CD248- ThyMC 2 months and 22-27 months old mice (n = 4, mean ± SEM). Statistical significance was calculated by unpaired two-tailed student’s t-test. Postn: Control vs. Aged **p = 9.9×10−3. Ccl19: Control vs. Aged ** p = 8.4×10−3.

Source data

Extended Data Fig. 8 ThyMC stress responses and Penk+ ThyMC ablation.

(A) Heatmap displaying gene set enrichment analysis (GESA) of differentially expressed genes between Transplantation (n = 3) and Control (n = 4) samples, as well as Aging (n = 4) and Control (n = 4) samples across different mouse ThyMC subtypes. Significance level marked as dot corresponds to FDR between 0.05 and 0.25 following official GSEA User Guide. (B) Heatmap showing the expression of Ccl19, Flt3l and Il15 in different ThyMC subsets, across different stress states. (Control n = 4, Transplantation n = 3, Aging n = 4). (C) Bar graphs showing the results of ELISA measurements of Ccl19 and Flt3l protein levels in whole thymic tissue in Control (n = 5) and Transplant (n = 6) samples. (Mean ± SEM) Statistical significance was calculated by unpaired two-tailed student’s t-test. Ccl19: Control vs. Transplant * p = 4.3×10−2. Flt3l: Control vs. Transplant ** p = 7.2×10−3. (D) Representative flow plots showing the percent of tdTomato labeled MC in Penk-Cre-tdT/iDTR and Penk-Cre-tdT mice respectively after diphtheria toxin mediated depletion. The analyzed cells are CD248- MC, gated on as described in Extended Data Fig. 6A. Percentages refer to percent of parent gate. (E) Bar graphs showing FACS quantification of stromal cell subsets in Control (iDTR Ctrl n = 6) and Penk-Cre-tdT/iDTR (Penk iDTR n = 7) mice 6 days post-bone marrow transplantation and diphtheria toxin injection. (Mean ± SEM) Statistical significance was calculated by unpaired two-tailed student’s t-test. Two independent experiments. CD248- ThyMC: iDTR Ctrl vs. Penk-iDTR **p = 4.9×10−3, CD248+ ThyMC: iDTR Ctrl vs. Penk-iDTR *p = 4.0×10−2. (F) Flow cytometric analysis of thymocyte subsets Control (iDTR Ctrl n = 7) and Penk-Cre-tdT/iDTR (Postn iDTA n = 7) mice 6 days post-bone marrow transplantation and diphtheria toxin injection. (Mean ± SEM) Statistical significance was calculated by unpaired two-tailed student’s t-test. Two independent experiments. (G) Total number of thymocytes in Control (iDTR Ctrl n = 6) and Penk-Cre-tdT/iDTR (Postn iDTA n = 7) mice 6 days post-bone marrow transplantation and diphtheria toxin injection presented as bar graphs. (Mean ± SEM). (H) Representative flow plots showing the changes in ThyMC subsets in Control, PostnCreER-tdT/iDTA and PenkCre-tdT/iDTR mice. The analyzed cells are gated on as described in Extended Data Fig. 6A. Percentages refer to percent of parent gate. (I) Representative flow plots showing the changes in thymic progenitors in in Control, PostnCreER-tdT/iDTA and PenkCre-tdT/iDTR mice. The analyzed cells are gated on live singlet CD4- and CD8- thymocytes, except for the ETP gate which is set on DN1 thymocytes. Percentages refer to percent of parent gate.

Source data

Extended Data Fig. 9 Postn+ ThyMC ablation and Ccr7 expression.

(A) Representative flow plots showing the extent of tdTomato depletion ThyMC in Postn-CreERT-tdT/iDTA and Postn-CreERT-tdT samples respectively after 4-HT induction. The analyzed cells are CD248- ThyMC, gated on as described in Extended Data Fig. 6E. Percentages refer to percent of parent gate. (B) Bar graphs showing the flow cytometric quantification of stromal cell subsets in Control (iDTA Ctrl n = 4) and Postn-CreER-tdT/iDTA (Postn iDTA n = 6) mice 6 days post-bone marrow transplantation and 4-HT induction. (Mean ± SEM) Statistical significance was calculated by two-tailed student’s t-test. Two independent experiments. CD248- ThyMC: iDTA Ctrl vs. Postn-iDTA *p = 1.3×10−2. CD248+ ThyMC: iDTA Ctrl vs. Postn-iDTA ***p = 7.1×10−4. (C) FACS analysis of thymocyte subsets Control (iDTA Ctrl n = 4) and Postn-CreER-tdT/iDTA (Postn iDTA n = 6) mice 6 days post-bone marrow transplantation and 4-HT induction. (Mean ± SEM) Statistical significance was calculated by unpaired two-tailed student’s t-test. Two independent experiments. (D) Total number of thymocytes in subsets Control (iDTA Ctrl n = 4) and Postn-CreER-tdT/iDTA (Postn iDTA n = 6) mice 6 days post-bone marrow transplantation and 4-HT induction presented as bar graphs. (Mean ± SEM). (E) Analysis of DN1, DP, SP CD4, SP CD8 and Penk+ ThyMCs by flow cytometry, presented as absolute numbers per thymus in Penk-Cre-tdT mice Day 0-Day 14 following sublethal irradiation. (Day 0 = 5, Day 1 = 3, Day 3 = 4, Day 7 = 3, Day10 = 3, Day14 = 4) Two independent experiments. (Mean ± SEM) Statistical significance was calculated using unpaired two-tailed student’s t-test. DN1: Day 0 vs. Day 14 *** p = 6.5×10−4. Dashed lines indicates baseline levels of parameter measured. (F) Scatter plot showing correlation between Postn+ ThyMC (x-axis) and ETP numbers (y-axis, intercept: 2235.21, slope 17.05, Gray=95 CI based on 1000 bootstarp replicates for regression prediction boundaries) (left), ETP numbers (x-axis) and Ccl19 protein levels (y-axis, intercept: 112.14, slope 0.12, Gray=95 CI based on 1000 bootstarp replicates for regression prediction boundaries) (middle) and Postn+ ThyMC numbers (x-axis) and Ccl19 protein levels (y-axis, intercept: 105.89, slope 0.01, Gray=95 CI based on 1000 bootstarp replicates for regression prediction boundaries) (right). Statistical significance was calculated using a two-sided Pearson’s correlation test. (G) Dot plots showing the transcript levels of CCR7 across human and mouse thymus cell populations. (H) Bar graphs showing protein levels of Ccr7 across mouse thymus hematopoietic and stromal cell subsets as determined by flow cytometric analysis (n = 3, mean ± SEM). Two independent experiments. (I) Representative histogram showing flow cytometric analysis of Ccr7 expression on early thymic progenitor (ETP) cells. Representative histograms from flow cytometric quantification of Ccr7 protein levels on various hematopoietic and stromal cell populations from mouse thymus. (J) Representative histograms from flow cytometric quantification of Ccr7 protein levels on various hematopoietic and stromal cell populations from mouse thymus.

Source data

Extended Data Fig. 10 Detection and quantification of ThyMCs and thymic compartments after intrathymic transfer.

(A) Representative flow plots showing the presence of GFP+ Penk+ ThyMCs and tdTomato+ Postn+ ThyMCs in the thymi of bone marrow transplantation recipients 6 days post-intrathymic injection of 5 000 cells. (B) Flow cytometric analysis of intrathymically injected GFP+ (Penk + ) ThyMC or tdTomato+ (Postn + ) ThyMCs 6 days ThyMCs 6 days after injection and bone marrow transplantation, presented as absolute numbers per thymus. (Dose of ThyMC 4000-8000) (Sham=9, Penk+ ThyMC=14, Postn+ ThyMCs=10, mean ± SEM) Three independent experiments. (C) Total number of thymocytes in recipients of Sham, GFP+ (Penk + ) ThyMC or tdTomato+ (Postn + ) ThyMCs 6 days after intrathymic injections and bone marrow transplantation,. (Dose of ThyMC 4000-8000) (Sham=9, Penk+ ThyMC=14, Postn+ ThyMCs=10, mean ± SEM) Three independent experiments. (D) FACS quantification of thymus endothelium 6 days after intrathymic injection of Sham, GFP+ (Penk + ) ThyMC or tdTomato+ (Postn + ) ThyMCs displayed as bar graphs. (Dose of ThyMC 4000-8000) (Sham=9, Penk+ ThyMC=14, Postn+ ThyMCs=10, mean ± SEM) Three independent experiments. Statistical significance was determined by one-way ANOVA followed by Tukey’s post-hoc analysis. Sham vs. Postn+ ThyMC ** p = 1.3×10−3; Penk+ ThyMC vs. Postn+ ThyMC ** p = 7.7×10−3. (E) Assessment of thymus epithelium and ThyMCs 6 days after intrathymic injection of Sham, GFP+ (Penk + ) ThyMC or tdTomato+ (Postn + ) ThyMCs displayed as bar graphs. (Dose of ThyMC 4000-8000) (Sham=9, Penk+ ThyMC=14, Postn+ ThyMCs=10, mean ± SEM) Three independent experiments. Statistical significance was determined by one-way ANOVA followed by Tukey’s post-hoc analysis. (F) Flow cytometric plots showing GFP labeled cells 6 days after adoptive transfer of 2000-4000 CD8 + T cells or CD248- ThyMCs. (G) Flow cytometric quantification of adoptively transferred GFP + CD248- ThyMCs 1-16 weeks following intrathymic injection and HSCT. (Day 6 = 10, Week 4 = 5, Week 8 = 5, Week 16 = 8, mean ± SEM) Five independent experiments. (H) 3D confocal microscopy images of thymic tissue 6 days following intrathymic injection of GFP + CD248- ThyMCs into bone marrow transplantation recipients. Tissue was stained with DAPI (white; cell nuclei), GFP (green; ThyMC or autofluorescent adipocytes) and BODIPY (red; adipocytes). Due to the autofluorescence of adipocytes and the fact that these cells increase in frequency following radiation conditioning, BODIPY staining was carried out to confirm GFP signal. (I) Bar graphs displaying the absolute number of thymocytes in thymi from recipients of intrathymic injections of Sham, CD8 + T cells and CD248- ThyMCs, 6 days after injections and bone marrow transplantation. (Dose of CD8 + T cells and CD248- ThyMCs: 2000-4000) (Sham n = 4, CD8 + T cells n = 6, CD248- ThyMC n = 8, mean ± SEM) Two independent experiments. (J) Bar graphs displaying the flow cytometric quantification of endothelial cells, 6 days following an intrathymic sham injection or adoptive transfer of CD8 + T cells and CD248- ThyMCs. (Dose of CD8 + T cells and CD248- ThyMCs: 2000-4000) (Sham n = 4, CD8 + T cells n = 6, CD248- ThyMC n = 8, mean ± SEM) Two independent experiments. Statistical significance was determined by one-way ANOVA followed by Tukey’s post-hoc analysis. Sham vs. CD248- ThyMC * p = 2.1×10−2; CD8 + T cells vs. CD248- * p = 4.3×10−2. (K) FACS analysis of thymic epithelial cells and ThyMCs 6 days following an intrathymic sham injection or adoptive transfer of CD8 + T cells and CD248- ThyMCs. (Dose of CD8 + T cells and CD248- ThyMCs: 2000-4000) (Sham n = 4, CD8 + T cells n = 6, CD248- ThyMC n = 8 mean ± SEM) Two independent experiments. Statistical significance was determined by one-way ANOVA followed by Tukey’s post-hoc analysis.

Source data

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafsson, K., Isaev, S., Mirsanaye, K. et al. Mesenchymal thymic niche cells enable regeneration of the adult thymus and T cell immunity.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02864-w

Read More

- Advertisement -

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Popular Articles